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Abstract: Dilated cardiomyopathy (DCM) is characterized by left- or biventricular dilation, making
the cardiac muscle thin and friable which ultimately results in heart failure as the pumping ability
of the heart is reduced. Recent evidence suggests that alterations in energy metabolism are related
to the development of DCM. Specifically, it is thought that the heart undergoes a loss of metabolic
flexibility leading to reduced ATP production with a shift from fatty acid oxidation (FAO) to glycolysis.
Generally, males show a higher incidence and severity of DCM as compared to females. However,
little is known about sex-related differences occurring in DCM, especially with regards to cardiac
energy metabolism. This study used differential gene expression analysis and gene set enrichment
analysis to identify enriched metabolic pathways in male and female DCM patients. Afterwards, the
exact differences in the identified pathways were further investigated using context-specific genome-
scale metabolic models (GEMs). Initial inspection of the models revealed that female DCM patients
had more active pathways mostly belonging to fatty acid oxidation (FAO), glutamate metabolism and
glycolysis. These findings were then further confirmed using Flux Variability Analysis (FVA), as some
reactions only carried flux in the female DCM model. Moreover, FVA showed that some metabolic
pathways in male DCM patients resembled those of females, potentially implying a ‘feminization’ of
the male heart in DCM. Nevertheless, a major limitation of the current study is that, to the best of our
knowledge, no in vivo studies exist that investigated sex differences in cardiac energy metabolism.
While this hampered the validation of the observed results, it also highlights the importance of
conducting studies like the one at hand to further elucidate sex-related differences in the pathology
of DCM.
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1. Introduction

Cardiomyopathies are heart muscle disorders that cause mechanical and/or electrical

dysfunction of the heart. One type of cardiomyopathy is dilated cardiomyopathy (DCM),

a non-ischemic disorder that is caused by structural and functional abnormalities of the

myocardium. Specifically, DCM is characterized by left- or biventricular dilation, which

results in a weakened and thin cardiac muscle with decreased pumping ability, effectively

reducing the flow of oxygenated blood throughout the body [1,2].

After coronary heart disease, dilated cardiomyopathy is the most common cause of

heart failure [3], with an estimated incidence of approximately one out of 250 people [4,5].

Moreover, it is the most common indication for heart transplantation worldwide [6].In

general, males show a higher incidence and severity of DCM as compared to females [7].

However, little is known about sex differences occurring in DCM [3]. A study by Haddad

et al. (2008) [8] showed that there is a sex-specific genetic expression profile for DCM: genes

found to be deregulated specifically in females are usually involved in energy metabolism

and regulation of transcription and translation, whereas deregulated genes in males are

related to muscular contraction. Moreover, another study found that men with DCM

showed a higher expression of apoptosis-related proteins than women with DCM [9].

Recent evidence suggests that impairments in energy metabolism are related to the

pathogenesis of DCM. Specifically, the genetic expression of metabolic pathways of mi-

tochondria and the production of ATP is altered in DCM patients when compared to a

healthy control [1]. Failing hearts undergo what is known as loss of metabolic flexibility, a

term that defines the ability of the myocardium to produce ATP from different substrates

depending on their availability. In a normal functioning heart, fatty acid oxidation (FAO) is

the biggest contributor to ATP production (40-60%), while glucose metabolism accounts

for the remaining 20-40%. In a DCM heart, there is a shift towards glycolysis and ketone

oxidation to produce ATP [10]. The reduction of metabolic flexibility, together with an

increased production of reactive oxygen species (ROS) due to increased oxidative stress,

affects cardiac contractility and ATP production [11]. On average, considering all causes of

cardiac metabolic impairment, it was estimated that the production of ATP is reduced by

30-40% in DCM hearts [10].

Another research by Alexander et al. (2010) [12] found evidence of sex-related differ-

ences in DCM patients in the levels of plasma metabolites such as cortisol, cortisone and

androgen. In this study, significant differences in metabolite concentrations were found be-

tween males and females in healthy controls while DCM patients did not show differences
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between sexes for the same metabolites. This would imply a metabolic ’feminization’ of

the cardiac tissue in males with DCM.

Despite these findings, there remains some paucity about the exact sex-specific differ-

ences in cardiac energy metabolism in DCM patients. A powerful tool to identify metabolic

variation occurring in diseases is provided by in silico genome-scale metabolic models

(GEMs), as they do not require any kinetic information about the reactions and are thus

less computationally expensive [13,14]. Therefore, in this study, we want to investigate

sex-related differences in patients with DCM using context-specific GEMs. First, we will use

differential gene expression analysis to determine which genes are differentially expressed

in males and females with DCM. Next, we will use these results in gene set enrichment

analysis (GSEA) to identify enriched metabolic pathways. We will then investigate what

the exact differences in these pathways are between males and females with DCM using

context-specific GEMs and mathematical approaches such as Flux Variability Analysis

(FVA) and Flux Space Sampling (FSS).

2. Methods

2.1. Data

The data employed in this study was obtained from a publicly available dataset of

the MAGNet consortium (BioProject: PRJNA595151 [15]) containing the RNA sequenc-

ing data from 366 biopsies of left ventricular free-wall tissue collected during cardiac

surgery from subjects suffering from heart failure and from unused donor hearts with

apparently normal function. 166 (66 females) out of the 366 samples were collected from

dilated cardiomyopathy (DCM) patients and 166 (89 females) from the unused donor hearts,

serving as a control in this study. Metadata (age, gender, ethnicity) about each sample

was also available. Analysis on sample characteristics and principal component analysis

(PCA) were performed in R using tidyverse [16] and pcaMethods [17] packages respectively.

2.2. Data Pre-processing and Exploration

Prior to analysis, the log2-transformed Counts Per Million (CPM) values of the data

set were normalized using the Trimmed Means of Means (TMM) normalization method

in R using the edgeR [18] and limma [19] packages in version 3.14 of Bioconductor, which

has been found to perform well in comparative studies [20]. The method involves the

calculation of sample-specific normalization factors which are then used to calculate the
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between-sample normalized log2-transformed CPM values for each gene and sample.

2.3. Differential Expression Analysis

A method that can be used to determine which genes are expressed at different levels

between conditions is Differential Expression (DE) analysis. A common first step in DE

analysis is the filtering of genes that consistently have zero or low counts [21]. Here, the

function filterByExpr of the edgeR package was used. As a next step, linear modeling

followed by empirical Bayes statistical modeling of the aforementioned pre-processed

RNA-seq data was performed in R using the limma package [22]. DE analysis was per-

formed between DCM and Donor samples for females and males separately, obtaining

two log fold change values for each gene. Gene annotations were retrieved using the

bioMart package [23] from the Ensembl database, using the GRCh38.p13 version of the

Homo Sapiens genome.

2.4. Gene Set Enrichment Analysis

Gene Set Enrichment Analysis (GSEA) is a computational method that can identify

which pathways are enriched in a pre-defined ranked gene list and whether there are

significant differences between two biological states.

The input for GSEA was thus a CSV file containing the gene names, together with the

corresponding log fold change and p-value, obtained from the DE analysis for the tested

conditions, i.e. DCM vs control in males and females separately.

The analysis was performed twice, using two different databases for enrichment

analysis: the Kyoto Encyclopedia of Genes and Genomes (KEGG) and WikiPathways. In

both cases, adjustment for multiple testing was performed using the Benjamini-Hochberg

procedure. The final output of the analysis were the pathways that were found to be

enriched only in males or females.

2.5. Context Specific Genome-Scale Metabolic Models

Based on the results obtained from the GSEA, it was decided to further investigate

the differences in female and male cardiac energy metabolism in DCM. Genome-scale

metabolic models represent all known metabolic reactions with a stoichiometric matrix

S, containing the stoichiometric coefficients for each reaction. Using the stoichiometric

matrix and assuming that the system is under a steady-state, where the concentration of
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each metabolite remains constant over time, fluxes through each reaction can be predicted

[24]. All reaction fluxes that satisfy the steady-state assumption in the null space of S.

By imposing constraints on some reactions, the null space can be further reduced, and

different methods exist that allow for the analysis of the resulting solution space. This study

made use of two different analysis techniques, namely Flux Variability Analysis (FVA) and

Flux Space Sampling, which will be further discussed in Section 2.5.3 and 2.5.4, respectively.

2.5.1. Construction of Context-Specific GEMs

As mentioned previously, GEMs usually aim to include all known metabolic reactions.

Clearly, not all of these reactions will be active in a specific cell type or under particular con-

ditions. Therefore, various algorithms have been developed that allow for the construction

of context-specific GEMs using mRNA expression data.

One such method is the Gene Inactivity Moderated by Metabolism and Expression

(GIMME) algorithm which has been implemented in the Constraint-Based Reconstruction

and Analysis (COBRA) toolbox (Version 3.0) in Matlab (Version 2021b) [25,26]. The required

inputs for the algorithm are a set of gene expression data, a genome-scale reconstruction of

the metabolic network and one or more Required Metabolic Functionalities (RMF) that the

model is supposed to achieve. Based on these inputs, GIMME then determines the reactions

that should be active based on a predefined threshold. Reactions with an expression level

below that threshold will be deemed inactive and will only be added to the model if they

are required to fulfill the objective function. To determine which of the inactive reactions

will need to be added to the model, linear optimization methods are used [25].

For this study, four different models (Control female and male & DCM female and

male) were created. To do so, the expression data of the MAGNet dataset was converted

to FPKM values and the mean expression for each gene and group was calculated. For

each model, the mean gene expression values were mapped to the corresponding reaction

of the Recon3D model, which is a community-driven model, providing a comprehensible

reconstruction of human metabolism [27].

Since one of the main objectives of a cardiac cell is to generate as much energy as possi-

ble, mostly in the form of ATP, the RMF of all models was set to maximize ATP production.

The threshold defining reactions as (in)active was set to half a standard deviation above

the mean, calculated from the expression values of all models (i.e., all models had the same

threshold).
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2.5.2. Quality Checks and Model Overview

To test for basic model functionality, sanity checks, following a script provided within

the COBRA toolbox, were performed on all obtained models. To identify differences

between the four models, two different overlays were created, showing the differences

in retained reactions between the control male and female models, and DCM male and

female models. The overlays were then visualized on the Recon3D map using the Virtual

Metabolic Human (VMH) website [28].

2.5.3. Flux Variability Analysis

As aforementioned, multiple different reaction flux vectors exist that satisfy the objec-

tive function in the same way. Flux Variability Analysis (FVA) provides a way to account

for the different possible solutions. Using linear programming, FVA finds the minimum

and maximum fluxes through each reaction that are needed to fulfill the objective function

[29].

In this study, FVA was performed on six subsystems of interest, namely citric acid

cycle, pyruvate metabolism, glutamate metabolism, FAO, glycolysis/gluconeogenesis and

oxidative phosphorylation, for each of the models. As this study was only interested in

the sex-related differences in energy metabolism of DCM patients, only reactions that were

either shown to have different flux ranges in the two control models, but not in the diseased

models, or reactions with the same flux ranges in the control models, but not in the diseased

models, were further investigated.

2.5.4. Flux Space Sampling

A disadvantage of FVA is that it needs an objective function to be specified, which

introduces an observer bias about the main objective of the cell. A technique that does

not require such an objective function is Flux Space Sampling (FSS). With this method, a

sequence of feasible solutions is generated that fulfill the network constraints of a metabolic

model. With enough samples, an accurate representation of the entire solution space can be

created. This provides information on not only the range of feasible flux solutions, but also

on their probability, unlike FVA.

To further investigate possible sex differences in metabolism in DCM patients, we

were planning to perform FSS on the previously mentioned subsystems for each model.

Unfortunately, when implementing the FSS algorithm, some technical difficulties were
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encountered. Due to time constraints, this analysis could therefore not be performed

successfully.

3. Results

3.1. Data Description

The total study population was composed of 332 samples (155 females). 66 out of

the 155 female samples and 100 out of the 177 male samples were obtained from DCM

patients. Table 1 shows a comparison of the baseline characteristics between men and

women. Statistical analysis revealed that the observed frequency of African-American and

Caucasian samples was significantly different (p-value < .001) between control and DCM

samples in the female subpopulation, while no significant difference (p-value = 0.06) was

detected for male samples. Similarly, age was found to be significantly different between

female control and DCM samples (mean age 59 ± 12.5 years vs. 51.1 ± 11.7 years in female

control vs DCM, respectively, p < 0.001). For men, the mean age was not significantly

different between control and DCM (52.6 ± 12.2 years vs. 52.7 ± 9.8 years in male control vs.

DCM, respectively, p = 0.8).

To further investigate how the detected significant differences in age and ethnicity in

the female subpopulation affected the gene expression data and to determine whether they

were confounders that needed to be corrected for, PCA plots were constructed. As none of

the first 10 principal components separated the samples by ethnicity or age, it was decided

that neither of these two variables was a confounder. Therefore, they were not corrected for

in subsequent analysis.

3.2. Differential Expression Analysis

After filtering, 6746 genes were removed, leaving 14035 genes for further analysis. A

total of 8429 differentially expressed genes (DEGs) (3685 upregulated and 4744 downregu-

lated) were identified for female DCM samples when compared to donors and 6928 DEGs

(2880 upregulated and 4048 downregulated) for male samples. 2240 upregulated DEGs

were common between males and females (Figure 1A). Similarly, 2240 DEGs were found to

be downregulated in male as well as female DCM patients (Figure 1B).

3.3. GSEA

In total, 53 pathways were found to be enriched using the KEGG database (23 for

males and 32 for females) and 37 with WikiPathways (20 for males and 17 for females)

(Supplementary Table 2). For both sexes and databases, most enriched pathways belonged
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to the immune response, energetics and metabolism, and signal transduction (Figure 2).

As it was then decided to further investigate sex-related differences in cardiac energy

metabolism, the pathways belonging to the energy and metabolism category were further

represented with dotplots (Figure 3). Common enriched pathways for both female and male

DCM patients found with the KEGG database were: central carbon metabolism in cancer,

glycerophospholipid metabolism, metabolic pathways and protein digestion and absorp-

tion. With WikiPathways the following pathways were found to be commonly enriched in

male and female DCM patients: amino acid metabolism, conversion of angiotensinogen

to angiotensin II and renin-angiotensin-aldosterone system(RAAS). All of the commonly

enriched pathways were similarly enriched in males and females (i.e., had a similar gene

ratio, enrichment score and p-value). Using the KEGG database, some pathways (i.e, retinol

metabolism, glycolysis/gluconeogenesis, pyruvate metabolism) were found to be only sig-

nificantly enriched in male DCM patients. For WikiPathways, the pathways that were only

enriched for males were codeine and morphine metabolism and metabolic reprogramming

in colon cancer. Here, one pathway (glycerophospholipid biosynthetic pathway) was also

found to only be enriched in females.

3.4. GEMs - Model Overview

The results obtained from the sanity checks of the four created models can be found

in the supplementary materials (Supplementary Tables 3 & 4). In Figure 4A and B, the

differences in the retained reactions for the subsystems of interest between the control and

DCM models can be seen respectively. For the differences in retained reactions between the

female and male control models (Fig. 4A), it can be observed that most of the reactions were

still present in both models (i.e., brown reactions). However, 17 reactions were only present

in the male control model (i.e., blue reactions). One of these reactions belonged to pyruvate

metabolism, three to glutamate metabolism and 17 to FAO. The names of the reactions

that were only present in the male control model can be found in Supplementary Table 5.

Interestingly, all of the reactions that were shown to be only present in the male control

model were active in both (i.e., female and male) DCM models, indicating a potential

change in active energy-related metabolic pathways in female DCM patients.

The overlay created for the two DCM models (Fig. 4B) again shows that most reactions

were retained in both models. Nevertheless, 18 reactions were found to only be present in

the female DCM model (i.e., yellow reactions). Three out of these reactions belonged to

glycolysis and 15 to FAO. The names and descriptions of these reactions can be found in
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Supplementary Table 5. None of these reactions was present in either of the two control

models, again indicating a change in active metabolic pathways in female DCM patients.

3.5. GEMs - FVA

After performing Flux Variability Analysis on the subsystems for energy metabolism

stated in Section 2.5.3, the reactions with flux ranges that showed differences only in the

control groups or only in the diseased groups were retained for further analysis.

Thus, out of the six subsystems tested, only three showed some difference in the flux range

vectors results: for the FAO subsystem, out of 614 reactions tested, 17 were found to be

altered in one out of the four models (Figure 5, reactions labeled with "*"). Specifically, six

out of the 17 reactions only showed a different flux range in the male control model, possibly

indicating a metabolic change in male DCM patients. The remaining 11 reactions did not

carry a flux in any model, except for the female DCM one. In the pyruvate metabolism

subsystem, 5 of the 22 reactions had a difference in the flux range vectors (Figure 5, reactions

labeled with "**"). Here, similar observations like for FAO can be made. Four reactions

only carried a flux in the female DCM model and one reaction was shown to only have

a different flux range for male controls. Finally, one of the four reactions in the oxidative

phosphorylation subsystem was found to have a different flux range again only in the

female DCM model (Figure 5, reactions labeled with "***").

4. Discussion

In this study, cardiac sex differences in the energy metabolism of DCM patients were

investigated using GSEA and context-specific GEMs. GSEA revealed that the main enriched

pathways in male and female DCM patients compared to healthy controls belonged to

signal transduction, immune system response and energetics and metabolism. Based on

these preliminary findings, it was decided to further investigate the exact sex differences

in energy metabolism using GEMs. First analysis showed that the female DCM patient

model had more active pathways belonging mostly to fatty acid oxidation (FAO), gluta-

mate metabolism and glycolysis. These findings were then further confirmed using Flux

Variability Analysis (FVA), as some reactions only carried flux in the female DCM model.

Additionally, FVA revealed that the energy metabolism of male DCM patients was more

similar to females, implying a possible ’feminization’ of the male heart in DCM.
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4.1. Increased number of metabolic pathways in female DCM patients and metabolic feminization of

the male DCM heart

The model overview and FVA revealed, that some reactions were only retained or only

carried flux in the female DCM model. This could suggest that female metabolism is more

altered in DCM which could be in accordance with the findings by Haddad et al. (2008) [8].

The researchers showed that in females, differentially expressed genes in DCM are mainly

related to energy metabolism or to transcription and translation, whereas differentially

expressed genes in males with DCM were mainly related to muscular contraction. However,

further comparison of the results obtained from the current study and that performed by

Haddad et al. (2008) is needed to determine if the genes found to be differentially expressed

in females by Haddad et al. are related to the reactions that were found to be only active in

the female DCM model obtained in this study.

A further observation of FVA results was that some reactions only had a different

flux range in male controls, but could carry the same fluxes in other models, which could

indicate that male energy metabolism in DCM starts to resemble that of females. This

would be in line with the research by Alexander et al. (2010) [12], that found evidence

for metabolic ’feminization’ of cardiac tissue in males with DCM. However, it needs to be

stressed that the results of the aforementioned paper were found to be significant only in

metabolites not strictly associated with energy metabolism, such as cortisol and androgen.

Nonetheless, from the data showed here, it is possible to speculate that a similar mechanism

might occur also in relation to energy production.

An alternative explanation for the possibly observed ’feminization’ of the male DCM

heart could be that male androgen levels decrease with age, ultimately making male

metabolism more similar to that of females [30]. However, as no significant difference was

found in the age distribution between males in the control and the DCM group, this effect

should be accounted for.

4.2. Possible FSS Results

While no results were obtained from the Flux Space Sampling, two hypotheses on the

expected results were formulated based on the findings made from the model overviews

and FVA. One of the results that was obtained, was that reactions that are active in females

with DCM did not carry flux in any of the other models. In other words, in females with

DCM, more reactions were active than in males. This could mean that more metabolic

pathways are activated in females with DCM. For FSS, it would therefore be expected that

either all these pathways will be activated at the same time(Figure 6B), or a different reaction
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will be activated per individual run (Figure 6C). All pathways being active simultaneously

would result in a lower mean flux per reaction for females with DCM compared to all other

models, whereas a different reaction being activated each run would result in a higher

standard deviation (Figure 6).

4.3. Discrepancies between GSEA and GEM results

From the results obtained from the GSEA, it was observed that some pathways related

to cardiac energy metabolism (e.g., pyruvate metabolism, glycolysis) were only enriched in

either males or females. Therefore, it was expected that these differences could also be seen

in the constructed GEMs. However, most of the reactions of the investigated subsystems

did not show any differences between all models in the possible flux ranges they could

carry. A possible explanation for this observation is that most of the reactions belonging

to energy metabolism might be associated with housekeeping genes (i.e., genes that are

essential for normal cell functioning and maintenance). As these genes would be expressed

similarly across all four conditions, their associated reactions were probably also retained

similarly in the obtained models.

Additionally, the GIMME algorithm requires the definition of an objective function,

which was set to ATP production in the current study. As only a few pathways exist

to generate ATP and all models needed to retain these pathways to fulfill the objective

function, any potential differences between the four conditions were possibly further

obliterated. Therefore, it would be interesting to determine in future research, if more

differences between the models can be observed when using other algorithms that do not

require the formulation of an objective function to construct the models.

5. Conclusions and future developments

Using GSEA and context-specific GEMs, this study found evidence for a higher

activation of metabolic pathways in females with DCM than males, and for ’feminization’

of metabolic function in males with DCM. However, the interpretation of these results is

limited by the fact that no in vivo studies exist that investigated sex differences in cardiac

energy metabolism, which shows the importance of more studies being conducted in this

area.

An additional limitation of this study is the way in which the context specific GEMs

were constructed. This disadvantage is intrinsic to the GIMME algorithm, which requires

the user to set an arbitrary threshold in order to determine which reactions are deemed to

be active in the model. Here, the threshold was decided taking into consideration previous
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studies conducted on similar topics. However, it cannot be ruled out that choosing a

different value would lead to different results from the ones showed here.

Finally, as a future development to this study, a successful execution of Flux Space

Sampling analysis will be performed. Since this technique does not introduce any bias

concerning an objective function for the cell, we believe novel insights on the mechanisms

regulating sex differences in cardiac energy metabolism will be achieved.
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Figures and tables

Table 1. Overview of sample characteristics.

Female (n = 155) Male (n = 177)

Factor
Donor

(n = 89)

DCM

(n = 66)
Sig.

Donor

(n = 77)

DCM

(n = 100)
Sig.

n Ethnicity (%)
African-

American 23 (25.8%) 36 (54.5%)
<.001

1 21 (27.3%) 41 (41.0%)
.06

1

Caucasian 66 (74.2%) 30 (45.5%) 56 (72.7%) 59 (59.0%)

Mean Age in years (SD) 59.0 (12.5) 51.1 (11.7) <.001 2 52.6 (12.2) 52.7 (9.8) .8 2

Significant differences between control and DCM are highlighted in bold.
1 ANOVA independent t-test with assumed equal variance
2 Chi-square test

Figure 1. The Venn diagrams of differentially expressed genes (DEGs) after filtering in female DCM
vs. Donor samples and male DCM vs. Donor samples. (A) Upregulated DEGs. (b) Downregulated
DEGs.



Version August 4, 2024 16 of 27

((a)) Male enriched pathways, KEGG

((b)) Female enriched pathways, KEGG

((c)) Male enriched pathways, WP

((d)) Female enriched pathways, WP

Figure 2. Piechart of enriched pathways grouped into categories. For (a) males and (b) females from
KEGG database and (c) males and (d) females from WikiPathways (WP).
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((a)) KEGG males ((b)) KEGG females

((c)) WP males ((d)) WP females

Figure 3. Dotplots of enriched pathways related to energetics and metabolism for (a) males and (b)
females using KEGG database and (c) males and (d) females using WikiPathways (WP).
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((a)) Control

((b)) DCM

Figure 4. Recon3 FBA overview of the of active metabolic reactions present in (a) control female vs.
male models and (b) DCM female vs. male models displayed only for subsystems of interest. Yellow
reactions are only active in female models, blue only in male models and brown are active in both
models.
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Figure 5. Range barplots of the reactions with different fluxes only in control groups or DCM groups.
* Fatty acid oxidation subsystem
** Pyruvate metabolism subsystem
*** Oxidative phosphorylation subsystem
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Figure 6. Illustration of the expected FSS results for females with DCM. (A) Multiple pathways
(arrows) exist to generate ATP. (B) One hypothesis is that all reactions are active in females with DCM,
resulting in a lower mean flow per reaction compared to all other models. (C) Another hypothesis is
that a different reaction is activated per simulation. This would result in a higher standard deviation
per reaction in females with DCM.
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Supplementary materials

Table 2. List of enriched pathways and their assigned categories for males and females with KEGG
and WikiPathways (WP) databases. Pathways in bold were found in only males or only females.
Enrichment score <0 means downregulated pathway and >0 upregulated.

Pathway name Category Database Enrichment score

A. Enriched pathways for males

Photodynamic
therapy-induced HIF-1

survival signaling Cancer related pathway
WP -0,63656

Retinoblastoma gene in cancer WP -0,39086

p53 signaling pathway

Cell cycle, growth and death

KEGG -0,41611

Ribosome biogenesis in
eukaryotes KEGG -0,51206

Ferroptosis WP -0,53704

Parkin-ubiquitin
proteasomal system pathway WP -0,48732

Amino acid metabolism

Energetics and metabolism

WP -0,52561

Central carbon metabolism in
cancer KEGG -0,51474

Codeine and morphine
metabolism WP -0,90915

Conversion of
angiotensinogen to

angiotensin II
WP 0,98906

Glycerophospholipid
metabolism KEGG -0,43205

Glycolysis / Gluconeogenesis KEGG -0,51559

Metabolic pathways KEGG -0,24899

Metabolic reprogramming in
colon cancer WP -0,56326

Protein digestion and
absorption KEGG 0,50981

Pyruvate metabolism KEGG -0,55946

Renin-angiotensin-
aldosterone system (RAAS) WP 0,65803

Retinol metabolism KEGG -0,54922
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Antigen processing and
presentation

Immune system response

KEGG 0,50857

Complement and coagulation
cascades KEGG -0,44153

Complement system WP -0,44322

Graft-versus-host disease KEGG 0,70261

Hematopoietic cell lineage KEGG 0,45854

Microglia pathogen
phagocytosis pathway WP -0,56599

Natural killer cell mediated
cytotoxicity KEGG 0,43204

Overview of proinflammatory
and profibrotic mediators WP 0,54534

Primary immunodeficiency KEGG 0,68987

Rheumatoid arthritis KEGG 0,46606

Th1 and Th2 cell
differentiation KEGG 0,56460

Th17 cell differentiation KEGG 0,48355

Type I diabetes mellitus KEGG 0,65608

Malaria

Infectious disease

KEGG 0,51706

Pathogenic Escherichia coli
infection KEGG -0,31115

Pathogenic Escherichia coli
infection WP -0,61327

Salmonella infection KEGG -0,32702

Cell adhesion molecules

Signal transduction

KEGG 0,45489

Cytokine-cytokine receptor
interaction KEGG 0,38513

EGF/EGFR signaling
pathway WP -0,34510

Glucocorticoid receptor
pathway WP -0,51118

Hedgehog signaling pathway KEGG 0,57606

HIF-1 signaling pathway KEGG -0,43030

IL-10 anti-inflammatory
signaling pathway WP -0,86061

Modulators of TCR signaling
and T cell activation WP 0,56157

Neuroactive ligand-receptor
interaction KEGG 0,37304

Neuroinflammation and
glutamatergic signaling WP -0,36452

Nuclear receptors
meta-pathway WP -0,35924
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Oncostatin M signaling
pathway WP -0,49310

Viral protein interaction with
cytokine and cytokine

receptor
KEGG 0,48804

Gap junction
Transport

KEGG -0,43969

Phagosome KEGG -0,33269

B. Enriched pathways for females

Cancer immunotherapy by
PD-1 blockade Cancer related pathways

WP 0,70739

Retinoblastoma gene in cancer WP -0,40561

DNA IR-damage and cellular
response via ATR

Cell cycle, growth and death

WP -0,46408

Ferroptosis WP -0,51615

Ribosome biogenesis in
eukaryotes KEGG -0,51337

Amino acid metabolism

Energetics and metabolism

WP -0,51265

Central carbon metabolism in
cancer KEGG -0,48205

Conversion of
angiotensinogen to

angiotensin II
WP 0,98951

Glycerophospholipid
biosynthetic pathway WP -0,66173

Glycerophospholipid
metabolism KEGG -0,40776

Metabolic pathways KEGG -0,20461

Protein digestion and
absorption KEGG 0,47826

Renin-angiotensin-
aldosterone system (RAAS) WP 0,65435

Allograft rejection

Immune system response

KEGG 0,59531

Allograft rejection WP 0,48278

Antigen processing and
presentation KEGG 0,54292

Chemokine signaling
pathway KEGG 0,43477

Graft-versus-host disease KEGG 0,72512

Hematopoietic cell lineage KEGG 0,52230

Natural killer cell mediated
cytotoxicity KEGG 0,48315
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Overview of proinflammatory
and profibrotic mediators WP 0,61885

Primary immunodeficiency KEGG 0,78296

Th1 and Th2 cell
differentiation KEGG 0,55587

Th17 cell differentiation KEGG 0,48523

Type I diabetes mellitus KEGG 0,67954

African trypanosomiasis

Infectious disease

KEGG 0,64204

Pathogenesis of SARS-CoV-2
mediated by nsp9-nsp10

complex
WP 0,68121

Pathogenic Escherichia coli
infection KEGG -0,32288

Pathogenic Escherichia coli
infection WP -0,68316

Salmonella infection KEGG -0,36207

Cell adhesion molecules

Signal transduction

KEGG 0,50240

Cytokine-cytokine receptor
interaction KEGG 0,41625

EGF/EGFR signaling
pathway WP -0,38066

EGFR tyrosine kinase
inhibitor resistance KEGG -0,45836

EGFR tyrosine kinase
inhibitor resistance WP -0,43585

Glucocorticoid receptor
pathway WP -0,56283

HIF-1 signaling pathway KEGG -0,46193

Insulin signaling WP -0,35619

Modulators of TCR signaling
and T cell activation WP 0,61235

Neuroactive ligand-receptor
interaction KEGG 0,37968

Nuclear receptors
meta-pathway WP -0,37755

Oncostatin M signaling
pathway WP -0,54411

Viral protein interaction with
cytokine and cytokine

receptor
KEGG 0,55657
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Table 3. Overview of properties of the obtained context-specific GEMs.

Female Male

Control DCM Control DCM

Reactions 8513 9129 8574 8824

Metabolites 7498 7690 7536 7592

Metabolites (unique) 3808 3872 3826 3851

Compartments
(unique) 9 9 9 9

Genes (unique) 3290 3290 3290 3290

Deadends 3012 2767 3023 2899

Size of S 7498;8513 7690;9129 7536;8574 7592;8824

Rank of S 6717 6995 6748 6851

Percentage nz 0.00049909 0.00049647 0.00049692 0.00049767

Table 4. Overview of performed sanity checks on the obtained GEMs. Results were the same across
all models.

Female Male

Test Control DCM Control DCM

fastLeakTest1 Leak free

Exchanges, sinks, and demands have lb = 0,

except H2O Model does not produce energy from water

Exchanges, sinks and demands have lb = 0,

except H2O and O2 Model does not produce energy from water and oxygen

Exchanges, sinks, and demands have lb = 0,

allow DM_atp_c to be reversible Model does not produce matter when ATP demand is reversed

Exchanges, sinks, and demands have lb = 0,

test flux through DM_h[m](max) Model has no flux through h[m] demand (max)

Exchanges, sinks, and demands have lb = 0,

test flux through DM_h[c](max) Model has no flux through h[c] demand (max)

ATP yield Model does not produce too much ATP demand from Glc

Check duplicated reactions No duplicated reactions in model

Check empty columns in rxnGeneMat Empty columns in rxnGeneMat

Check that demand reactions have a lb >=0 No demand reaction can have flux in backward reaction

Check whether singleGeneDeletion runs smoothly singleGeneDeletion finished without problems

Check flux consistency Model is not flux consistent
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Table 5. Differences in active metabolic reactions between DCM female vs. male and Donor female
vs. male GIMME models.

Reaction name Subsystem Description

A. Active reactions in both males and females in DCM and only in males in control

LGTHL Pyruvate metabolism Lactoylglutathione Lyase

GTHOM Glutamate metabolism Glutathione Oxidoreductase

GTHO Glutamate metabolism Glutathione Oxidoreductase

CBPSAM Glutamate metabolism Carbamoyl-Phosphate Synthase
(Ammonia), Mitochondrial

RE1517X Fatty acid oxidation RE1517X

FAOXC225M Fatty acid oxidation Isomerization (C22:5), Mitochondrial

FAOXC184M Fatty acid oxidation Isomerization of (C18:4), Mitochondrial

FAOXC163GM Fatty acid oxidation Isomerization (C16:3), Mitochondrial

FAOXTC122M Fatty acid oxidation Isomerization Trans (C12:2),
Mitochondrial

FAOXC122M Fatty acid oxidation Isomerization (C12:2), Mitochondrial

FAOXC101M Fatty acid oxidation Isomerization (C10:1), Mitochondrial

FAOXC185M Fatty acid oxidation Isomerization (C18:5), Mitochondrial

FAOXC226M Fatty acid oxidation Isomerization (C22:6), Mitochondrial

FAOXC123M Fatty acid oxidation Isomerization (C12:3), Mitochondrial

FAOXC61M Fatty acid oxidation Isomerization (C6:1), Mitochondrial

FAOXC102M Fatty acid oxidation Isomerization (C10:2), Mitochondrial

FAOXC164M Fatty acid oxidation Fatty Acid Beta Oxidation (C16:4->C16:3),
Peroxisomal

DCIM Fatty acid oxidation Dodecenoyl-Coenzyme A Delta
Isomerase

B. Active reactions in only females in DCM and non-active in control

ACSM Glycolysis/gluconeogenesis Acetyl Coenzyme A Synthetase

R0355 Glycolysis/gluconeogenesis Hexokinase

R0354 Glycolysis/gluconeogenesis Hexokinase

DOCOSACT Fatty acid oxidation Activation of Docosanoic Acid for
Transport

MCDM Fatty acid oxidation Malonyl Coenzyme A Decarboxylase,
Mitochondrial

MCDP Fatty acid oxidation Malonyl Coenzyme A Decarboxylase
Peroxisomal

MCD Fatty acid oxidation Malonyl Coenzyme A Decarboxylase
Cytoplasmic
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RE2624X Fatty acid oxidation Alpha-Methylacyl Coenzyme A
Racemase

RE2993X Fatty acid oxidation 2,4-Dienoyl Coenzyme A Reductase
(NADPH)

RE2996X Fatty acid oxidation 2,4-Dienoyl Coenzyme A Reductase
(NADPH)

RE3195M Fatty acid oxidation Alpha-Methylacyl Coenzyme A
Racemase

RE3083X Fatty acid oxidation Alpha-Methylacyl Coenzyme A
Racemase

PHYHX Fatty acid oxidation Phytanoyl Coenzyme A Dioxygenase,
Peroxisomal

FAOXC102C101x Fatty acid oxidation Fatty Acid Beta Oxidation (C10:2->C10:1),
Peroxisomal

FAOXC103C102X Fatty acid oxidation Fatty Acid Beta Oxidation (C10:3->C10:2),
Peroxisomal

FAOXC164C163X Fatty acid oxidation Fatty Acid Beta Oxidation (C16:4->C16:3),
Peroxisomal

FAOXC165C164x Fatty acid oxidation Fatty Acid Beta Oxidation (C16:5->C16:4),
Peroxisomal

FAOXC226C225x Fatty acid oxidation Fatty Acid Beta Oxidation (C22:6->C22:5),
Peroxisomal

FAOXC160 Fatty acid oxidation Beta Oxidation of Long Chain Fatty Acid
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