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In brief, we show that variation in myelination along a single axon can significantly
reduce the peak amplitude and conduction velocity. The differences in peak amplitude
and conduction velocity between the heterogeneously myelinated axons are mainly
explained by the small differences in mean myelination level and not by the distinct
distribution of myelination along the axon.

1 Introduction

1.1 The axo-myelin unit

Rapid and efficient propagation of action potentials (APs) is an essential component of proper
neuronal function and delivery of information throughout the nervous system, especially over long
distances. In vertebrates, this is highly facilitated by myelin, a lipid-rich membrane enclosing the
axon and isolating it from the extracellular space, acting as an electrical insulator.

Myelin is formed in layers by oligodendrocytes in the central nervous system, and by Schwann
cells in the peripheral nervous system [1]. Along the axon, these myelin sheaths are interspaced
by the nodes of Ranvier, where the axonal membrane is in direct contact with the extracellular
space (Figure , allowing Nat and K™ ions to cross the axonal membrane through the respective
voltage-gated ion channels, generating a voltage trace of the distinct AP shape [1} |2]. This axonal
geometry reduces the current flow across the axon by reducing its capacitance and increasing its

resistance, providing the structural basis for fast, saltatory AP propagation from node to node



[3]. As a consequence, signal conduction is accelerated 20 to 100-fold when compared to non-
myelinated axons of the same diameter |4]. Furthermore, this mechanism of saltatory movement
of nerve impulses is metabolically efficient, as it eliminates the need for AP regeneration at every
point of the axonal membrane [3].

Close communication between axons and myelinating glial cells is required for sheath formation
and the regulation of myelin thickness. Additionally, reciprocal axo-glial signaling affects the
axonal cytoskeleton and is needed for axonal survival. The result of this close interaction is the
differentiation of the axonal membrane into distinct molecular, structural, and functional domains:
the nodes of Ranvier, the paranodes, the juxtaparanodes, and the internodal regions |13} |5].

The common theory that myelin would act as a perfect insulator along the internodal regions has
become progressively challenged by extended models based on experimental data. In fact, sharp-
electrode intracellular recordings [6H8] and computer simulations [9H11] both provided evidence for
axial current in the fluid-filled periaxonal and paranodal spaces. Recently, Cohen et al. (2020)
were also able to prove the existence of this current experimentally, showcasing the importance of

the many complex structures found along the axon [12].
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Figure 1: Schematic representation of a myelin-covered neuron. Image created in BioRender.

1.2 Computational approaches

Computational neuron models have proved to be of great value for efficiently and easily studying
neuronal responses to varying stimuli. To represent the myelin sheath around axons in these
models, three different approaches of increasing complexity can be found in the literature [11].
The first approach treats the myelin sheath as a perfect insulator of the internodal axolemma
[13]. This can be modeled by a single-cable equivalent electrical circuit, in which the internodal

segments consist of a single resistor to represent the axoplasm. The axon and myelin sheath here



form one tightly combined membrane, with no intermediary conducting pathways [12]. Although
this is the most common representation of myelin, it lacks biological relevance, as it has been
experimentally demonstrated that current flow through the myelin is possible [13].

The second approach to modeling myelin sheaths does allow some current flow through the
myelin. This can also be modeled using a single-cable equivalent electrical circuit, with a series of
compartments consisting of the parallel combination of a resistor and a capacitator representing
the myelin [11].

Lastly, the third approach is to use a double-cable equivalent electrical circuit model, containing
representations of nodes, paranodes, myelin, and axolemma. While the myelin is represented as
described in the second approach, the internode is represented by two compartmental layers: the
axon and the periaxonal space. Contrary to the other two described modeling frameworks, this
approach can reproduce depolarising afterpotentials, which are thought to occur as a result of
passive axolemma capacitance discharge [10]. Additionally, multiple other studies have shown
the ability of this model to produce biologically accurate outputs [14], and successfully address a
variety of biological questions. For example, it has contributed to the discovery that the length of
the node of Ranvier can regulate the conduction speed of APs in myelinated axons [9} |15]. Thus,

due to its proven increased biological accuracy, the double-cable model will be used in this study.

1.3 Research Question

Most modeling studies that use the double-cable model assume intra-axonal structural homogeneity
19, |12 [15H17]. Particularly, these studies commonly use a single parameter value to describe the
length of all internodes in the model. Similarly, myelin thickness and periaxonal space width are
also often assumed to be homogeneously distributed along the axon. In reality, however, these
may vary significantly along the length of the axon. Specifically, myelination of neurons has been
shown to be a highly dynamic process characterized by variable growth and remodeling across the
axon [1§]. Furthermore, axons in the cortex, as well as the auditory and visual systems, have been
demonstrated to exhibit specific patterns of irregular myelination [15] {19} 20]. However, it is yet
unclear how this heterogeneity of myelination patterns (e.g., internode length, myelin thickness,
and periaxonal space width) along the axon affects AP propagation.

In this study, we, therefore, aim to investigate the effect of intra-axonal variation of the intern-
ode length, myelin thickness, and periaxonal space width on the AP shape and conduction velocity
using the double-cable model. Since intra-axonal myelin plasticity is involved in regulating AP
conduction, we hypothesize that incorporating these variations into the double-cable model will
significantly change the conduction velocity and the shape of the voltage trace of the AP when

compared to the model without intra-axonal heterogeneity.



1.4 Innovation & Significance

Previous computational modeling studies have demonstrated the effect of varying internode length
[9], periaxonal space width [16], and myelin thickness [17] on AP conduction. However, these stud-
ies always made use of the same parameter values for all internodes included in the model. Thus,
to the best of our knowledge, no previous research has focused on how intra-axonal variation of
the internode length, periaxonal space width, and myelin thickness collectively affects AP shape
and conduction velocity. Our innovative research aims at developing a new framework for com-
putational neuroscience by incorporating intra-axonal heterogeneity into the double-cable model.
Our final aim is to investigate whether variable values of myelination parameters along the length
of the axon have a clear effect on AP shape and conduction velocity, and thus possibly to establish
the need of incorporating this variation in future developments of the model in order to further
increase its biological accuracy.

Learning about the effects of intra-axonal heterogeneity on the AP shape and propagation ve-
locity might provide valuable insight into how intra-axonal myelin plasticity can regulate neuronal
signal conduction in the healthy brain. An enhanced understanding of axo-myelin plasticity is
also essential for a better understanding of dys- and demyelinating disorders. Multiple sclerosis
and metachromatic leukodystrophy are just two examples among a range of rare diseases and syn-
dromes affecting neuronal myelin. These disorders pose a significant burden on the people affected
by them, as well as on our economy. For instance, a 2020 study reported a pooled incidence
rate across 75 countries of 2.1 per 100,000 persons per year for multiple sclerosis [21]. Moreover,
another study by Paz-Zulueta et al. (2020) [22] estimates the total annual cost per MS patient
in Europe to average around 40,300 euros. Other neurological disorders, including schizophrenia
and bipolar disorder, have also been associated with a dysregulated axo-myelin unit [23|. Hence,
the incorporation of intra-axonal heterogeneity in studies modeling AP propagation in myelinated
axons can boost our knowledge of the mechanisms behind these diseases and provide new insights
into potential therapeutic targets, a crucial step towards the development of effective treatment

approaches.

2 Methods

2.1 Model & Parameter Values

The double-cable model as developed by Richardson et al. (2000) [11] with the MATLAB imple-
mentation established by Arancibia-Cércamo et al. (2017) [9] was used in our study. All simulations
were performed in MATLAB version R2021a. The MATLAB implementation of the double-cable

model can be freely downloaded from GitHub (https://github.com/xmsterl/Project_group_


https://github.com/xmsterl/Project_group_2B
https://github.com/xmsterl/Project_group_2B

2BJ). The parameter values were retrieved from the experimental results of Cullen et al. (2021) ,
where available. Only the periaxonal space width at the paranode and myelin wrap periodicity
values were retrieved from Arancibia-Cércamo et al. (2017) [9]. An overview of all parameter

values used in the simulations can be found in Table

2.2 Simulating Intra-Axonal Heterogeneity

The internode length, myelin thickness, and periaxonal space width were first varied separately
among the internodes in the model in order to investigate the effect of intra-axonal heterogeneity.
Moreover, to explore the combined effect of variable myelination, an additional simulation including
intra-axonal variation of all three parameter values together was performed. All other parameters
were assumed to be constant in each simulation. Figure [2] visually displays the constant and

variable geometric parameters of a single internode in the model.
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Figure 2: Visual overview of an internode and the corresponding geometric neuron parameters used
in the study. The parameter values colored in red were varied along the length of the azxon.

The internode length, myelin thickness, and periaxonal space width were varied around the
mean according to four distinct coefficients of variation (CoefVar): 0.1, 0.2, 0.3, and the biological
CoefVar as estimated from the experimental results of Cullen et al. (2021) [16]. The estimated
biological CoefVar of the internode length, myelin thickness, and periaxonal space width are 0.10,
0.34, and 0.15, respectively. The variation of the parameter values along the axon was assumed
to be normally distributed. Since intra-axonal variation was implemented using a random number
generator, the model outcomes are not deterministic. Hence, 10 simulations per condition were
performed to estimate the effect of intra-axonal heterogeneity on the AP conduction (Table[l)). To
ensure sufficient spatial resolution for each simulation with varying internode sizes, the maximum

internode segment size was set to 0.8 pm, where the conduction velocity has converged to a stable

value (Figure [ST)).
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Table 1: Overview of the number of simulations per condition.

Internode length ~— Muyelin thickness  Periazonal space width — All | Sum
CoefVar = 0.1 10 10 10 10 40
CoefVar = 0.2 10 10 10 10 40
CoefVar = 0.2 10 10 10 10 40
Biological CoefVar 10 10 10 10 40
Sum 40 40 40 40 160

2.3 Data Analysis

For each simulation, the mean and standard deviation of the voltage peak values of nodes 15 to
35 were calculated. The voltage peak value of a node is defined to be the maximum voltage value
reached after the induction of a single axonal AP. Furthermore, the conduction velocity between
nodes 15 and 35 was computed with the velocities() function available in the MATLAB imple-
mentation of the double-cable model. A two-sided one-sample t-test was performed to compare
the mean voltage peak value and conduction velocity of the simulations with intra-axonal varia-
tion against the deterministic outcomes of the simulation without any intra-axonal variation. A
Bonferroni-adjusted p-value < 0.05 was considered to be statistically significant.

Principal component analysis (PCA) was performed to investigate the main sources of variation
in the AP conduction between the different simulations. The voltage traces of nodes 15 to 35 over

all time points were used as features in the PCA model.

3 Results

3.1 Intra-axonal variation reduces AP velocity and amplitude

As shown in Figure intra-axonal variation in periaxonal space width, myelin thickness, and
internode length alone do not lead to a significantly changed conduction velocity or mean voltage
peak value. Nonetheless, varying all parameter values together along the axon resulted in a sig-
nificantly reduced conduction velocity (adj. p-value = 0.013) and average voltage peak value (adj.
p-value = 0.009) for a biological CoefVar. Furthermore, introducing heterogeneity of all parameter
values along the axon with a CoefVar of 0.2 and a CoefVar of 0.3 only led to a lower conduction
velocity (adj. p-values of 0.032 and 0.005, respectively) without a significant change in the average
voltage peak value. Of note, although the conduction velocity and average voltage peak value are
not significantly reduced for a variable myelin thickness, a negative relationship with the CoefVar

can be observed in Figure
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Figure 3: Conduction velocity (A) and average voltage peak value (B) for the different simula-
tions. The red * indicates a statistically significant difference from the simulation without variation
(dashed line).

3.2 Mean voltage peak value correlates with the main source of variation

Furthermore, PCA was performed to find the main sources of variation. The first principal compo-
nent explains more than 75 % of the variance and is highly correlated with the average voltage peak
value (r = 0.79) (Figure [4). However, PC1 does not seem to be correlated with any of the varied
parameters (Figures [4 and . Interestingly, there is also a high correlation between conduction

velocity and average voltage peak value (r = 0.80).
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Figure 4: Correlation plot of the pairwise correlations between the first and second principal compo-
nents, AP velocity and amplitude (mean and standard deviation), and the parameter classes. The
size of the dots correlates with the absolute Pearson correlation coefficient.

3.3 Relationship between AP velocity and mean peak value

Figure 5] shows the relationship between conduction velocity and average voltage peak value. Inter-
estingly, introducing intra-axonal heterogeneity in internode length led to inter-simulation variation
in the mean voltage peak value without affecting the conduction velocity (Figures and C). In
contrast, there is a strong relationship between conduction velocity and mean voltage peak value
when varying the myelin thickness along the axon (Figures and D). Noteworthy, the varia-
tion in conduction velocity between the different simulations seems to be particularly related to
the variation in mean internode length and myelin thickness (Figures and D). Specifically, a
smaller mean internode length is associated with an increase in the mean voltage peak value with-
out affecting the conduction velocity, while a smaller myelin thickness is associated with a decrease

in both the mean voltage peak value and conduction velocity.
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Figure 5: Relationship between the conduction velocity and average voltage peak value. Data points
(i.e., simulations) are colored by the parameter that is varied along the azon (A) and by the
corresponding coefficient of variation (CoefVar) (B). Furthermore, a color gradient shows the mean
internode length (C) and myelin thickness (D) for the simulations with a variable internode length
and myelin thickness, respectively.

4 Discussion

4.1 The impact of intra-axonal heterogeneity on AP conduction

Experimental studies have shown that various myelination parameters including myelin sheath
length and myelin thickness are not homogeneously distributed along the axon. By
incorporating different levels of intra-axonal heterogeneity into the double-cable model, we have
shown that combined intra-axonal variability in internode length, myelin thickness, and periaxonal
space width significantly reduces the AP velocity and amplitude (Figure . Interestingly, early
modeling studies have shown that the conduction velocity decreases more steeply when the myelin
thickness becomes smaller . The internodes with a small myelin thickness might therefore

act as a bottleneck for conduction velocity along a heterogeneously myelinated axon. This would



also explain why we observed a lower conduction velocity for a larger CoefVar of the myelin
thickness. A similar non-linear relationship between myelin thickness and AP amplitude could
possibly explain the observed lower average voltage peak value in the heterogeneously myelinated
axon. However, the relationship between myelin thickness and AP amplitude has to our knowledge
not been established yet.

It should be noted that the parameters we varied along the axon are not the only parameters
that have been observed to vary along a single axon. For instance, Giacci et al. (2018) demonstrated
that the axonal diameter, cross-sectional area, and myelin decompaction can also vary significantly
along the axon of a retinal ganglion cell [20]. In addition, Arancibia-Cdrcamo et al. (2017)
found intra-axonal heterogeneity of the length of the node of Ranvier along the axons in the
corpus callosum [9]. It is yet unknown how these additional sources of variation can affect AP
propagation. Hence, it is up to future studies to investigate whether the incorporation of these
additional sources of variation into the double-cable model limits or exaggerates the observed

reduction in the conduction velocity and AP amplitude.

4.2 Myelination as a regulator of AP propagation

As an additional result, we have found that the average voltage peak value highly correlates
with the main source of variation (Figure [4]). Interestingly, inter-simulation differences in the
average voltage peak value and conduction velocity were shown to be particularly explained by
the variation in the mean internode length and myelin thickness (Figure , and thus not by the
inter-simulation differences in the parameter distribution along the axon. These findings would
suggest that changing the distribution of myelination along the axon is not as effective for the
dynamic regulation of action potential conduction compared to dynamically altering the mean
level of myelination along the axon. Indeed, the myelin distribution profile along the axon has
previously been shown to follow a specific gradient in neurons of the auditory system [15] and the
corpus callosum [25]. Additionally, the myelination distribution of an axon has been demonstrated
to be specific for the neocortical layer of the neuron [19]. This may indicate that the global
myelination distribution along an axon is a stable feature of a neuron and is thus not subject to
large dynamical changes over time. Instead, myelination has been suggested to be locally fine-
tuned for the regulation of axonal AP propagation [26]. Noteworthy, the notion that the global
distribution of axonal myelination is not subject to dynamic alterations does not mean that it
does not have a function in the regulation of AP conduction. Instead, in a study by Salami et
al. (2003), it was observed that AP propagation along the axon of the neurons in the ventrobasal
nucleus slows down when the axons enter the cortex as a result of the poor myelination in the
cortical region [27]. The authors suggested that differences in the myelination along the axon serve

as a regulatory mechanism to ensure that the timing of APs from multiple sources arrive within a
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specific temporal window.

Furthermore, we have shown that a lower mean internode length is associated with a higher
mean AP amplitude without affecting the conduction velocity (Figures and C). These findings
might be similar to findings by Ford et al. (2015) |15]. Their study demonstrated that a larger
ratio of internode length to axon diameter decreased the AP amplitude. The proposed explanation
is that increasing the internode length while keeping the axonal diameter constant will result in a
less efficient transfer of current from one node to the adjacent one, which in turn leads to reduced
synchronicity in the activation of Na™ channels, and less rapid and synchronous activation of K+
channels. By increasing the amplitude of APs, the reliability of AP propagation is increased. In ad-
dition, in line with our findings, early modeling studies also demonstrated the relative insensitivity
of conduction velocity to changing internode length [28].

Finally, we have also found that a larger mean myelin thickness is associated with an increase in
both the conduction velocity and the mean AP amplitude (Figures[5|A and C). Ford et al. (2015)
showed that by increasing the number of myelin wraps, thus the myelin thickness, the capacitance
along the internode is lowered [15]. This results in the reduction of the time required to charge the
internodal membrane, meaning that consecutive nodes of Ranvier require less time to reach their
threshold value, thus increasing conduction velocity [15} |28]. Additionally, our findings are further
supported by an experimental study by Barak et al. (2019) [29]. Specifically, in this study, it was
shown that a reduced myelin thickness of neurons in the corpus callosum of Gtf2i knock-out mice

is indeed associated with a reduction in both the axonal conductivity and the AP amplitude.

4.3 Insights & Implications

Most neuronal modeling approaches have, until now, ignored the presence of intra-axonal hetero-
geneity. However, our study has demonstrated that neglecting variation along the axon might lead
to the overestimation of the AP conduction velocity and amplitude. Neuronal models that assume
a homogeneous distribution of myelin along the axon are widely used in the scientific field: from
bio-engineering [30] to more fundamental neurological research [16]. The new insights provided by
our study may thus have implications for multiple scientific domains. In fact, accurate prediction
of AP propagation is an essential aspect of computational approaches that try to simulate neu-
ronal communication, synchronization, and information transmission. This becomes particularly
relevant when considering studies that use neuronal models to simulate the effect of dys- and de-
myelinating disorders as well as other pathological conditions that are known to be associated with
an exaggerated variability in myelination along the axon.

Moreover, our findings might also be of relevance for the development of new treatment ap-
proaches for dys- and demyelinating diseases. Particularly, remyelination therapeutics are consid-

ered to be promising treatment approaches for these diseases |31]. These promising remyelination
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compounds (e.g., modulators of sphingosine-1-phosphate receptor pathway) either stimulate oligo-
dendrocyte precursor cell proliferation and differentiation, or promote the formation of myelin by
mature oligodendrocytes [31]. Our results suggest that, for these remyelination compounds, in-
creasing the mean myelination level along the axon alone might not be sufficient to re-establish
healthy action potential conduction. Instead, minimizing intra-axonal variability would possibly

also be required to fully restore axonal AP conductivity.

4.4 Future Computational Research

In the present study, we investigated the effect of intra-axonal variation on action potential con-
duction by imposing a random distribution of myelination parameter values along the axon. The
proposed model establishes this biological variation in axon and myelin structure as Gaussian noise
using experimentally derived distribution parameters, making it incredibly simple to implement,
also into other existing models. Additionally, the model still allows for noise-free, detailed testing
of the specific influence of individual parameters by setting the CoefVar equal to zero, as has been
done by Blades et al. (2022) [32]. Future studies on the effect of axonal structure disruptions,
for example, in de- or dysmyelinating disorders, could make use of the model by using distinct
Gaussian distributions with parameter values for healthy and diseased states.

Including variation in the model more closely captures the physiological structures emerging
from biological processes. Specifically, the incorporation of noise addresses the suggested intra-
axonal variation in myelin sheath length resulting from initial myelination and myelin remodeling
[18]. Nevertheless, in reality, the parameter values might not be completely randomly distributed
along the axon. For example, a progressively increasing internode length along the axon has
previously been observed in neurons of the auditory system [15]. Also, a myelination gradient
in the corpus callosum has been detected in prior research [25]. Future studies could therefore
investigate the effect of such a non-random distribution of myelination parameters along the axonal
length on the AP conduction.

Moreover, the model used in the present study made use of multiple physiological simplifica-
tions that could be addressed in future computational modeling studies to make the model more
biologically accurate. For instance, the current model did not include the voltage-gated potassium
Kv1 channels that are enriched in the juxtaparanode, the region directly adjacent to the paranodal
region. These juxtaparanodal Kv1 channels are thought to be important for the maintenance of
the resting potential in the internodes [1]. Although these Kv1 channels are often thought to have
little effect on AP conduction, no modeling study has, to our knowledge, investigated the effect
of these ion channels on AP propagation along a (heterogeneously) myelinated axon. Incorpora-
tion of the juxtaparanodal Kv1 channels in future studies could make the model more biologically

accurate.
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In addition, we modeled the behavior of a single axon in isolation. Simulations by Blades
et al. [32] have shown that changes in the AP propagation of a single axon do not necessarily
translate into altered behavior of the signal conduction in nerve bundles (e.g., compound action
potentials). Future modeling studies could therefore investigate whether the reduction in AP

conduction velocity and amplitude are also persistent at a higher anatomical scale (e.g., nerve

bundles).

4.5 Future Experimental Research

Similar to the present research, future modeling studies would require an experimental estimation
of the biological variation along a single axon. However, the limited number of structural param-
eters measured in in-vivo neurobiological studies greatly restricts the current use of the model
to only a few parameters, for which paired values for mean and standard deviation are available.
Additionally, parameters are commonly measured in sections of a single brain area, and along
numerous neurons, as has been done in the study by Cullen et al. (2021) from which the values for
the mean and standard deviation of the myelin thickness, periaxonal space width, and internode
length used in this study were taken. Interestingly, Arancibia-Cédrcamo et al. (2017) found that
the variation of the node length along a single axon is lower than the variation between axons.
This would suggest that using the variation of myelination parameters measured from a single
brain region may overestimate the true biological variability that occurs along a single axon.

In addition, prior studies that focused on estimating the variation along a single axon have
mainly been estimating the variation of just a single parameter. For example, Arancibia-Cércamo
et al. (2017) estimated the intra-axonal variation of node length in the optic nerve of rats [9],
while Call and Bergles (2021) investigated the heterogeneity of the internode length along the
axons in the somatosensory cortex of mice [33]. The different organisms and tissues from which
the single parameter values are estimated make it very difficult to integrate these values into a
single neuronal model. Hence, a possible direction for future research would be to estimate the
intra-axonal variation for multiple (myelination) parameters per tissue and organism. Using the
estimated parameters, future computational modeling studies could more reliably investigate the

effects of intra-axonal heterogeneity on AP propagation.

5 Conclusion

In conclusion, in this study we propose new insights into the mechanisms underlying AP propaga-
tion by introducing structural variation of myelin sheaths in a computational model representing
the axon-myelin unit. In particular, we have shown that this heterogeneity has a clear impact on

neuronal properties, specifically, a significant reduction of the AP amplitude and conduction veloc-
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ity. By updating the previously formulated double-cable model, we provide a new framework for
more biologically accurate studies regarding the effect of an irregular distribution of myelin. These
results will prove to be useful not only in healthy states, but even more in diseased conditions,
where this irregularity is enhanced. As a final remark, while more work is needed to determine
precise ranges of values for the parameters under consideration and to identify variation at the

neuronal population level, our research represents a first important step in this direction.
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Supplementary Material

Table S1: Parameter values

Parameter Value
Temperature 37 °C
dt 0.05 ps
tmax 2 ms
Stimulation amplitude 0.5 nA
Stimulation duration 10 ps
Number of nodes 51
Number of internodes 50
Axonal diameter 0.5894 pm
Node length 0.8364 pm
Internode length N(50.32, 50.32*CoefVar) pum
Maximum internode segment length 0.8 pm
Paranode length 1.3 pm
Periaxonal space width N(6.477, 6.477*CoefVar) nm
Periaxonal space width (at paranode)* 0.012 nm
Myelin wrap periodicity* 15.6 nm

Myelin Thickness
Number of myelin lamellae
Resting membrane potential
Node leak reversal potential
Node axial resistivity
Node membrane capacitance
Myelin membrane capacitance
Myelin membrane conductance
Internode axon membrane capacitance
Internode axon membrane conductance
Periaxonal space resistivity

N(0.1170, 0.1170*CoefVar) pum

Ceil(myelin width / wrap periodicity)

-72 mV
-84 mV
0.7 Qm
0.9 uF / em?
0.9 uF / em?
1 mS/ mm?
0.9 uF / cm?
0.1 mS/ mm?
0.7 Om

*Parameter value retrieved from Arancibia-Carcamo et al. (2017). All other parameter values

were retrieved from Cullen et al. (2021).
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Figure S1: Convergence of the conduction velocity. The graphs show the number of segments as
function of segment size (A) and the conduction velocity as a function of the number of segments

(B).
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Figure S2: Principal component analysis plot. The data points (i.e., simulations) are coloured by
the parameter that is varied along the azon (A) and by the corresponding coefficient of variation
(CoefVar) (B). The negative parabolic shape (i.e., Horseshoe effect) is the result of non-linear
relationships between the variables, not captured by the PCA.

19



	Introduction
	The axo-myelin unit
	Computational approaches
	Research Question
	Innovation & Significance

	Methods
	Model & Parameter Values
	Simulating Intra-Axonal Heterogeneity
	Data Analysis

	Results
	Intra-axonal variation reduces AP velocity and amplitude
	Mean voltage peak value correlates with the main source of variation
	Relationship between AP velocity and mean peak value

	Discussion
	The impact of intra-axonal heterogeneity on AP conduction
	Myelination as a regulator of AP propagation
	Insights & Implications
	Future Computational Research
	Future Experimental Research

	Conclusion

